PLTW Engineering

PLTW Engineering Formula Sheet 2014 (v14.2)

1.0 Statistics

Mean

$\mu=\frac{\sum x_{i}}{N} \quad$ (1.1a) $\quad \bar{x}=\frac{\sum x_{i}}{n}(1.1 \mathrm{~b})$
$\mu=$ population mean
$\bar{x}=$ sample mean
$\sum x_{i}=$ sum of all data values $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$
$N=$ size of population
$\mathrm{n}=$ size of sample

Median

Place data in ascending order.
If N is odd, median = central value
If N is even, median = mean of two central values
$\mathrm{N}=$ size of population

Range (1.5)
Range $=\mathrm{x}_{\max }-\mathrm{x}_{\min }$
$\mathrm{x}_{\max }=$ maximum data value
$\mathrm{x}_{\min }=$ minimum data value

2.0 Probability

Frequency

$\mathrm{f}_{\mathrm{x}}=\frac{\mathrm{n}_{\mathrm{x}}}{\mathrm{n}}$

$f_{x}=$ relative frequency of outcome x

$\mathrm{n}_{\mathrm{x}}=$ number of events with outcome x
$\mathrm{n}=$ total number of events

Binomial Probability (order doesn't matter)

$P_{k}=\frac{n!\left(p^{k}\right)\left(q^{n-k}\right)}{k!(n-k)!}$
$P_{k}=$ binomial probability of k successes in n trials
$p=$ probability of a success
$q=1-p=$ probability of failure
$k=$ number of successes
$\mathrm{n}=$ number of trials

Mode

Place data in ascending order.
Mode $=$ most frequently occurring value
If two values occur with maximum frequency the data set is bimodal.
If three or more values occur with maximum frequency the data set is multi-modal.

Standard Deviation

$\sigma=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}}$
(Population)
(1.5a)
$\mathrm{s}=\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-1}}$
(Sample)
(1.5b)
$\sigma=$ population standard deviation
$\mathrm{s}=$ sample standard deviation
$x_{i}=$ individual data value ($x_{1}, x_{2}, x_{3}, \ldots$)
$\mu=$ population mean
$\overline{\mathrm{x}}$ = sample mean
$\mathrm{N}=$ size of population
$\mathrm{n}=$ size of sample

Independent Events

$\mathrm{P}(\mathrm{A}$ and B and C$)=\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$
$P(A$ and B and $C)=$ probability of independent
events A and B and C occurring in sequence
$P_{A}=$ probability of event A

Mutually Exclusive Events

$P(A$ or $B)=P_{A}+P_{B}$
$P(A$ or $B)=$ probability of either mutually exclusive event A or B occurring in a trial
$P_{A}=$ probability of event A

Conditional Probability

$P(A \mid D)=\frac{P(A) \cdot P(D \mid A)}{P(A) \cdot P(D \mid A)+P(\sim A) \cdot P(D \mid \sim A)}$
$P(A \mid D)=$ probability of event A given event D
$P(A)=$ probability of event A occurring
$P(\sim A)=$ probability of event A not occurring
$P(D \mid \sim A)=$ probability of event D given event A did not occur

3.0 Plane Geometry

Parallelogram

Area $=b h$
(3.3)

Right Triangle

Rectangle

Perimeter $=2 \mathrm{a}+2 \mathrm{~b}$ (3.9)
Area = ab
(3.10)

Triangle (3.6)

Area $=1 / 2$ bh
$\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cdot \cos \angle \mathrm{A}$
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cdot \cos \angle \mathrm{B}$ $c^{2}=a^{2}+b^{2}-2 a b \cdot \cos \angle C$
(3.11)
(3.12)
(3.13)
(3.14)

Regular Polygons
Area $=\mathrm{n} \frac{\mathrm{s}\left(\frac{1}{2} \mathrm{f}\right)}{2}=\frac{\mathrm{ns}^{2}}{4 \tan \left(\frac{180}{\mathrm{n}}\right)}$

$\mathrm{n}=$ number of sides

Trapezoid

Area $=1 / 2(a+b) h$

Sphere

Volume $=\frac{4}{3} \pi r^{3}$
(4.8)

Surface Area $=4 \pi r^{2}$
(4.9)

Irregular Prism

Volume $=\mathrm{Ah}$
(4.12)
$A=$ area of base

5.0 Constants

$g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32.27 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$
$\pi=3.14159$

6.0 Conversions

Numbers Less Than One			Numbers Greater Than One		
Power of 10	Prefix	Abbreviation	Power of 10	Prefix	Abbreviation
10^{-1}	deci-	d	10^{1}	deca-	da
10^{-2}	centi-	C	10^{2}	hecto-	h
10^{-3}	milli-	m	10^{3}	kilo-	k
10^{-6}	micro-	$\boldsymbol{\mu}$	10^{6}	Mega-	M
10^{-9}	nano-	n	10^{9}	Giga-	G
10^{-12}	pico-	p	10^{12}	Tera-	T
10^{-15}	femto-	f	10^{15}	Peta-	P
10^{-18}	atto-	a	10^{18}	Exa-	E
10^{-21}	zepto-	z	10^{21}	Zetta-	Z
10^{-24}	yocto-	y	10^{24}	Yotta-	Y

9.0 Equations

Mass and Weight

$\begin{array}{ll}\mathrm{m}=\mathrm{VD}_{\mathrm{m}} & \text { (9.1) } \\ \mathrm{W}=\mathrm{mg} \\ \mathrm{W}=\mathrm{VD}_{\mathrm{w}} & \text { (9.2) }\end{array}$
$\mathrm{V}=$ volume
$\mathrm{D}_{\mathrm{m}}=$ mass density
$\mathrm{m}=$ mass
$\mathrm{D}_{\mathrm{w}}=$ weight density
W = weight
$\mathrm{g}=$ acceleration due to gravity

Temperature

$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$
(9.4)
$\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}+460$
$\mathrm{T}_{\mathrm{F}}=\frac{9}{5} \mathrm{~T}_{\mathrm{c}}+32$
$\mathrm{T}_{\mathrm{K}}=$ temperature in Kelvin
$\mathrm{T}_{\mathrm{C}}=$ temperature in Celsius
$\mathrm{T}_{\mathrm{R}}=$ temperature in Rankin
$\mathrm{T}_{\mathrm{F}}=$ temperature in Fahrenheit

Force and Moment

$\mathrm{F}=\mathrm{ma} \quad$ (9.7a) $\quad \mathrm{M}=\mathrm{Fd}_{\perp}$ (9.7b)
F = force
$\mathrm{m}=$ mass
$\mathrm{a}=$ acceleration
$\mathrm{M}=$ moment
$\mathrm{d}_{\perp}=$ perpendicular distance
Equations of Static Equilibrium
$\Sigma \mathrm{F}_{\mathrm{x}}=0 \quad \Sigma \mathrm{~F}_{\mathrm{y}}=0 \quad \Sigma \mathrm{M}_{\mathrm{P}}=0$
$\mathrm{F}_{\mathrm{x}}=$ force in the x -direction
$F_{y}=$ force in the y-direction
$\mathrm{M}_{\mathrm{P}}=$ moment about point P

9.0 Equations (Continued)

Energy: Work
$\mathrm{W}=\mathrm{F}_{\\|} \cdot \mathrm{d}$
$\mathrm{W}=$ work
$\mathrm{F}_{\\|}=$force parallel to direction of
\quad displacement
$\mathbf{d}=$ displacement

Power	
$P=\frac{E}{t}=\frac{W}{t}$	(9.10)
$P=\tau \omega$	(9.11)
$P=$ power	
$E=$ energy	
$W=$ work	
$t=$ time	
$\tau=$ torque	
$\omega=$ angular velocity	

Efficiency
Efficiency (\%) $=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}} \cdot 100 \% \quad(9.12)$
$\mathrm{P}_{\text {out }}=$ useful power output
$\mathrm{P}_{\text {in }}=$ total power input

Energy: Potential	
$\mathrm{U}=\mathrm{mgh}$	(9.13)
$\mathrm{U}=$ potential energy	
$\mathrm{m}=$ mass	
$\mathrm{g}=$ acceleration due to gravity	
$\mathrm{h}=$ height	

Energy: Kinetic	
$\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$	(9.14)
$\mathrm{K}=$ kinetic energy	
$\mathrm{m}=$ mass	
$\mathrm{V}=$ velocity	

Energy: Thermal
$\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
$\Delta \mathrm{Q}=$ change in thermal energy
$\mathrm{m}=$ mass
$\mathrm{c}=$ specific heat
$\Delta \mathrm{T}=$ change in temperature

Fluid Mechanics

$p=\frac{F}{A}$
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$ (Charles' Law)
$\frac{\mathrm{p}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2}}{\mathrm{~T}_{2}}$ (Gay-Lussanc's Law)
$\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$ (Boyle's Law)
$Q=A v$
$\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$\mathrm{P}=\mathrm{Qp}$
absolute pressure = gauge pressure

+ atmospheric pressure (9.23)
$p=$ absolute pressure
F = force
A = area
$\mathrm{V}=$ volume
$\mathrm{T}=$ absolute temperature
$\mathrm{Q}=$ flow rate
$\mathrm{v}=$ flow velocity
$\mathrm{P}=$ power

Mechanics	
$\bar{s}=\frac{\mathrm{d}}{\mathrm{t}}$	(9.24)
$\overline{\mathbf{v}}=\frac{\Delta \mathbf{d}}{\Delta \mathrm{t}}$	(9.25)
$a=\frac{v_{f}-v_{i}}{t}$	(9.26)
$X=\frac{v_{i}^{2} \sin (2 \theta)}{-g}$	(9.27)
$\mathrm{v}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$	(9.28)
$d=d_{i}+v_{i} t+1 / 2 a t^{2}$	(9.29)
$\mathrm{v}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a}\left(\mathrm{d}-\mathrm{d}_{\mathrm{i}}\right)$	(9.30)
$\boldsymbol{\tau}=\mathrm{dF} \sin \theta$	(9.31)
$\overline{\mathrm{s}}$ = average speed	
$\overline{\mathbf{v}}$ = average velocity	
$\mathrm{v}=$ velocity	
$v_{i}=$ initial velocity ($\mathrm{t}=0$)	
$\mathrm{a}=$ acceleration	
X = range	
$\mathrm{t}=$ time	
$\Delta \mathbf{d}=$ change in displacement d = distance	
$\mathrm{d}_{\mathrm{i}}=$ initial distance ($\mathrm{t}=0$)	
$\mathrm{g}=$ acceleration due to gravity	
$\tau=$ torque	
F = force	

Electricity

Ohm's Law
$\mathrm{V}=\mathrm{IR}$
$P=I V$
R_{T} (series) $=\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots+\mathrm{R}_{\mathrm{n}}$
R_{T} (parallel) $=\frac{1}{\frac{1}{\mathrm{R}_{1}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}}}$

Kirchhoff's Current Law

$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\cdots+\mathrm{I}_{\mathrm{n}}$
\quad or $\mathrm{I}_{\mathrm{T}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{k}}$
Kirchhoff's Voltage Law

$$
\begin{align*}
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\cdots+\mathrm{V}_{\mathrm{n}} \\
& \quad \text { or } \quad \mathrm{V}_{\mathrm{T}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~V}_{\mathrm{k}} \tag{9.37}
\end{align*}
$$

$\mathrm{V}=$ voltage
$\mathrm{V}_{\mathrm{T}}=$ total voltage
I = current
$\mathrm{I}_{\mathrm{T}}=$ total current
$\mathrm{R}=$ resistance
$\mathrm{R}_{\mathrm{T}}=$ total resistance
$\mathrm{P}=$ power

Thermodynamics

$P=Q^{\prime}=A U \Delta T$
$P=Q^{\prime}=\frac{\Delta Q}{\Delta t}$
$U=\frac{1}{R}=\frac{k}{L}$
$P=\frac{k A \Delta T}{L}$
$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$

$$
2
$$

$P_{\text {net }}=\sigma \operatorname{Ae}\left(T_{2}{ }^{4}-T_{1}{ }^{4}\right)$
$\mathrm{k}=\frac{\mathrm{PL}}{\mathrm{A} \Delta \mathrm{T}}$
$\mathrm{P}=$ rate of heat transfer
$\mathrm{Q}=$ thermal energy
$A=$ area of thermal conductivity
$U=$ coefficient of heat conductivity
(U-factor)
$\Delta T=$ change in temperature
$\Delta t=$ change in time
$R=$ resistance to heat flow (R-value)
$\mathrm{k}=$ thermal conductivity
$\mathrm{v}=$ velocity
$P_{\text {net }}=$ net power radiated
$\sigma=5.6696 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{k}^{4}}$
e = emissivity constant
$\mathrm{L}=$ thickness
$\mathrm{T}_{1}, \mathrm{~T}_{2}=$ temperature at time 1 , time 2

10.0 Section Properties

Rectangle Centroid

$\bar{x}=\frac{b}{2}$ and $\bar{y}=\frac{h}{2}$
(10.3)

Right Triangle Centroid
$\bar{x}=\frac{b}{3}$ and $\bar{y}=\frac{h}{3}$
(10.4)

Semi-circle Centroid
$\bar{x}=r$ and $\bar{y}=\frac{4 r}{3 \pi}$
(10.5)

$\bar{x}=x$-distance to the centroid
$\bar{y}=y$-distance to the centroid

11.0 Material

Stress (axial)
$\sigma=\frac{\mathrm{F}}{\mathrm{A}}$
$\sigma=$ stress
$\mathrm{F}=$ axial force
$\mathrm{A}=$ cross-sectional area

Strain (axial)

$\varepsilon=\frac{\delta}{\mathrm{L}_{0}}$
$\varepsilon=$ strain
$L_{0}=$ original length
$\delta=$ change in length

Modulus of Elasticity

$E=\frac{\sigma}{\varepsilon}$
$E=\frac{\left(F_{2}-F_{1}\right) L_{0}}{\left(\delta_{2}-\delta_{1}\right) A}$
$\mathrm{E}=$ modulus of elasticity
$\sigma=$ stress
$\varepsilon=$ strain
A = cross-sectional area
$\mathrm{F}=$ axial force
$\delta=$ deformation

Beam Formulas		
	Reaction Moment Deflection	$\begin{align*} & \mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\frac{\mathrm{P}}{2} \tag{12.1}\\ & \mathrm{M}_{\max }=\frac{\mathrm{PL}}{4} \text { (at point of load) } \tag{12.2}\\ & \Delta_{\max }=\frac{\mathrm{PL}^{3}}{48 \mathrm{EI}} \text { (at point of load) } \tag{12.3} \end{align*}$
	Reaction Moment Deflection	$\begin{align*} & R_{A}=R_{B}=\frac{\omega L}{2} \tag{12.4}\\ & M_{\max }=\frac{\omega L^{2}}{8} \quad \text { (at center) } \tag{12.5}\\ & \Delta_{\max }=\frac{5 \omega L^{4}}{384 E I} \quad \text { (at center) } \tag{12.6} \end{align*}$
	Reaction Moment Deflection	$\begin{align*} & R_{A}=R_{B}=P \tag{12.7}\\ & M_{\max }=P a \tag{12.8}\\ & \Delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 \mathbf{a}^{2}\right) \tag{12.9}\\ & \text { (at center) } \end{align*}$
	Reaction Moment Deflection	$\begin{align*} & R_{A}=\frac{P b}{L} \text { and } R_{B}=\frac{P a}{L} \tag{12.10}\\ & M_{\max }=\frac{P a b}{L} \quad \text { (at Point of Load) (12.11) } \\ & \Delta_{\max }=\frac{\operatorname{Pab}(a+2 b) \sqrt{3 a(a+2 b)}}{27 \mathrm{EI}} \tag{12.12}\\ & \quad \text { (at } x=\sqrt{\frac{a(a+2 b)}{3,}} \text { when } a>b \text {) } \end{align*}$

Deformation: Axial
$\delta=\frac{\mathrm{FL}_{0}}{\mathrm{AE}}$
$\delta=$ deformation
$\mathrm{F}=$ axial force
$\mathrm{L}_{0}=$ original length
$\mathrm{A}=$ cross-sectional area
$\mathrm{E}=$ modulus of elasticity

Deformation: Axial

$\delta=\frac{\mathrm{FL}_{0}}{\mathrm{AE}}$
$\delta=$ deformation
F = axial force
$\mathrm{L}_{0}=$ original length
A = cross-sectional area
$E=$ modulus of elasticity

Truss Analysis

$2 \mathrm{~J}=\mathrm{M}+\mathrm{R}$
(12.14)
$\mathrm{J}=$ number of joints
M =number of members
$\mathrm{R}=$ number of reaction forces

13.0 Simple Machines

Mechanical Advantage (MA)		
$\mathrm{IMA}=\frac{\mathrm{D}_{\mathrm{E}}}{\mathrm{D}_{\mathrm{R}}}$	$A M A=\frac{F_{R}}{F_{E}}$	(13.2)
\% Efficiency= $\left(\frac{\text { AMA }}{\text { IMA }}\right) 100$		
IMA = ideal mechanical advantage		
AMA = actual mechanical advantage		
$\mathrm{D}_{\mathrm{E}}=$ effort distance $\mathrm{D}_{\mathrm{R}}=$ resistance distance $\mathrm{F}_{\mathrm{E}}=$ effort force $\mathrm{F}_{\mathrm{R}}=$ resistance force		

Lever

Wheel and Axle

Pulley Systems

IMA = total number of strands of a single string supporting the resistance
(13.4)

IMA $=\frac{D_{E} \text { (string pulled) }}{D_{R}(\text { resistance lifted })}$

Inclined Plane

$I M A=\frac{L}{H}$
(13.6)

Wedge

$I M A=\frac{L}{H}$
(13.7)

Screw

$I M A=\frac{C}{\text { Pitch }}$
(13.8)

Pitch $=\frac{1}{\text { TPI }}$
(13.9)

Compound Machines

$M A_{\text {TOTAL }}=\left(M A_{1}\right)\left(M A_{2}\right)\left(M A_{3}\right) \ldots$

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$
\begin{align*}
G R & =\frac{N_{\text {out }}}{N_{\text {in }}}=\frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{\tau_{\text {out }}}{\tau_{\text {in }}} \tag{13.11}\\
\frac{d_{\text {out }}}{d_{\text {in }}} & \left.=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{\tau_{\text {out }}}{\tau_{\text {in }}} \text { (pulleys }\right) \tag{13.12}
\end{align*}
$$

Compound Gears

$\mathrm{GR}_{\text {TOTAL }}=\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\left(\frac{\mathrm{D}}{\mathrm{C}}\right)$

$$
\begin{aligned}
& \text { GR = gear ratio } \\
& \omega_{\text {in }}=\text { angular velocity }- \text { driver } \\
& \omega_{\text {out }}=\text { angular velocity }- \text { driven } \\
& N_{\text {in }}=\text { number of teeth }- \text { driver } \\
& N_{\text {out }}=\text { number of teeth }- \text { driven } \\
& d_{\text {in }}=\text { diameter }- \text { driver } \\
& d_{\text {out }}=\text { diameter - driven } \\
& \tau_{\text {in }}=\text { torque - driver } \\
& \tau_{\text {out }}=\text { torque - driven }
\end{aligned}
$$

14.0 Structural Design

Steel Beam Design: Shear

$\mathrm{V}_{\mathrm{a}} \leq \frac{\mathrm{V}_{\mathrm{n}}}{\Omega_{\mathrm{v}}}$
$\mathrm{V}_{\mathrm{n}}=0.6 \mathrm{~F}_{\mathrm{y}} \mathrm{A}_{\mathrm{w}}$
$\mathrm{V}_{\mathrm{a}}=$ internal shear force
$\mathrm{V}_{\mathrm{n}}=$ nominal shear strength
$\Omega_{\mathrm{v}}=1.5=$ factor of safety for shear
$F_{y}=$ yield stress
$A_{w}=$ area of web
$\frac{v_{n}}{\Omega_{v}}=$ allowable shear strength

15.0 Storm Water Runoff

Storm Water Drainage

$\mathrm{Q}=\mathrm{C}_{\mathrm{f}} \mathrm{CiA}$
$C_{C}=\frac{C_{1} A_{1}+C_{2} A_{2}+\cdots}{A_{1}+A_{2}+\cdots}$
$\mathrm{Q}=$ peak storm water runoff rate ($\mathrm{ft}^{3} / \mathrm{s}$)
$\mathrm{C}_{\mathrm{f}}=$ runoff coefficient adjustment factor
C = runoff coefficient
i = rainfall intensity (in./h)
A = drainage area (acres)

Runoff Coefficient Adjustment Factor	
Return Period	cf
$1,2,5,10$	1.0
25	1.1
50	1.2
100	1.25

Steel Beam Design: Moment
$\mathrm{M}_{\mathrm{a}} \leq \frac{\mathrm{M}_{\mathrm{n}}}{\Omega_{\mathrm{b}}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{x}}$
$\mathrm{M}_{\mathrm{a}}=$ internal bending moment
$\mathrm{M}_{\mathrm{n}}=$ nominal moment strength
$\Omega_{\mathrm{b}}=1.67=$ factor of safety for
\quad bending moment
$\mathrm{F}_{\mathrm{y}}=$ yield stress
$\mathrm{Z}_{\mathrm{x}}=$ plastic section modulus about
\quad neutral axis
$\frac{M_{n}}{\Omega_{b}}=$ allowable bending strength

Rational Method Runoff Coefficients	
Categorized by Surface	
Forested	0.059-0.2
Asphalt	0.7-0.95
Brick	0.7-0.85
Concrete	0.8-0.95
Shingle roof	0.75-0.95
Lawns, well drained (sandy soil)	
Up to 2\% slope	0.05-0.1
2\% to 7\% slope	0.10-0.15
Over 7\% slope	0.15-0.2
Lawns, poor drainage (clay soil)	
Up to 2\% slope	0.13-0.17
2\% to 7\% slope	0.18-0.22
Over 7\% slope	0.25-0.35
Driveways,	0.75-0.85
Categorized by Use	
Farmland	0.05-0.3
Pasture	0.05-0.3
Unimproved	0.1-0.3
Parks	0.1-0.25
Cemeteries	0.1-0.25
Railroad yard	0.2-0.40
Playgrounds	0.2-0.35
Business Districts	
Neighborhood	0.5-0.7
City (downtown)	0.7-0.95
Residential	
Single-family	0.3-0.5
Multi-plexes,	0.4-0.6
Multi-plexes,	0.6-0.75
Suburban	0.25-0.4
Apartments,	0.5-0.7
Industrial	
Light	0.5-0.8
Heavy	0.6-0.9

Spread Footing Design

$\mathrm{q}_{\text {net }}=\mathrm{q}_{\text {allowable }}-\mathrm{p}_{\text {footing }}$
$\mathrm{p}_{\text {footing }}=\mathrm{t}_{\text {footing }} \cdot 150 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
$q=\frac{P}{A}$
$\overline{q_{\text {net }}}=$ net allowable soil bearing pressure
$q_{\text {allowable }}=$ total allowable soil bearing pressure
$\mathrm{p}_{\text {footing }}=$ soil bearing pressure due to footing weight
$\mathrm{t}_{\text {footing }}=$ thickness of footing
q = soil bearing pressure
$P=$ column load applied
A = area of footing

16.0 Water Supply

Hazen-Williams Formula

$\mathrm{h}_{\mathrm{f}}=\frac{10.44 \mathrm{LQ}}{\mathrm{C}^{1.85}} \mathrm{~d}^{1.8655}$
$\mathrm{h}_{\mathrm{f}}=$ head loss due to friction (ft of $\mathrm{H}_{2} \mathrm{O}$)
$\mathrm{L}=$ length of pipe (ft)
$\mathrm{Q}=$ water flow rate (gpm)
C = Hazen-Williams constant
d = diameter of pipe (in.)

Dynamic Head

dynamic head = static head

- head loss (16.2)
static head = change in elevation between source and discharge

17.0 Heat Loss/Gain

Heat Loss/Gain

$Q^{\prime}=A U \Delta T$
(17.1)
$U=\frac{1}{R}$
Q = thermal energy
$\mathrm{A}=$ area of thermal conductivity
$\mathrm{U}=$ coefficient of heat conductivity (U-factor)
$\Delta T=$ change in temperature
$R=$ resistance to heat flow (Rvalue)
18.0 Hazen-Williams Constants

Pipe Material	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	$80-150$	130	100
Copper, Glass or Brass	$120-150$	140	130
Cement lined Steel or Iron	150	140	
Plastic PVC or ABS	$120-150$	140	130
Steel, welded and seamless or interior riveted	$80-150$	140	100

19.0 Equivalent Length of (Generic) Fittings

Screwed Fittings		Pipe Size										
		1/4	3/8	1/2	3/4	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4
Elbows	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tees	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Valves	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

Flanged Fittings		Pipe Size																
		1/2	3/4	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4	5	6	8	10	12	14	16	18
Elbows	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
	Long radius 90 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return Bends	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
	Long radius 180 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
Valves	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$\mathrm{T}=0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}$
$f=\frac{1}{\mathrm{~T}}$
duty-cycle $=\frac{\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\right)}{\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right)} \cdot 100 \%$
$\mathrm{~T}=$ period
$f=$ frequency
$\mathrm{R}_{\mathrm{A}}=$ resistance A
$\mathrm{R}_{\mathrm{B}}=$ resistance B
$\mathrm{C}=$ capacitance

21.B Resistor Color Code

21.A Boolean Algebra

Boolean Theorems		Consensus Theorems	
$X \cdot 0=0$	(21.1)	$X+\bar{X} Y=X+Y$	(21.16)
$x \cdot 1=x$	(21.2)	$X+\bar{X} \bar{Y}=X+\bar{Y}$	(21.17)
$X \cdot X=X$	(21.3)	$\bar{X}+X Y=\bar{X}+Y$	(21.18)
$x \cdot \bar{X}=0$	(21.4)	$\bar{X}+X \bar{Y}=\bar{X}+\bar{Y}$	(21.19)
$x+0=X$	(21.5)		
$x+1=1$	(21.6)	DeMorgan's Theorems	
$X+X=X$	(21.7)	$\overline{X Y}=\bar{X}+\bar{Y}$	(21.20)
$X+\bar{X}=1$	(21.8)	$\overline{X+Y}=\bar{X} \cdot \bar{Y}$	(21.21)
$\overline{\mathrm{X}}=\mathrm{X}$	(21.9)	Commutative Law	
		$X \cdot Y=Y \bullet X$	(21.10)
		$X+Y=Y+X$	(21.11)

Associative Law	
$\mathrm{X}(\mathrm{YZ})=(\mathrm{XY}) \mathrm{Z}$	
$\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y})+\mathrm{Z}$	(21.12)

Distributive Law

$X(Y+Z)=X Y+X Z$	(21.14)
$(X+Y)(W+Z)=X W+X Z+Y W+Y Z$	

Code	Tolerance
A	$\pm 0.05 \%$
B	$\pm 0.1 \%$
C	$\pm 0.25 \%$
D	$\pm 0.5 \%$
F	$\pm 1 \%$
G	$\pm 2 \%$
J	$\pm 5 \%$
M or NONE	$\pm 20 \%$
N	$\pm 30 \%$
S	$-10 \%,+30 \%$
T	$-20 \%,+50 \%$

23.0 G\&M Codes

G00 $=$ Rapid Traverse	(23.1)
G01 $=$ Straight Line Interpolation	(23.2)
G02 $=$ Circular Interpolation (clockwise)	(23.3)
G03 $=$ Circular Interpolation (c-clockwise)	(23.4)
G04 $=$ Dwell (wait)	(23.5)
G05 $=$ Pause for user intervention	(23.6)
G20 $=$ Inch programming units	(23.7)
G21 $=$ Millimeter programming units	(23.8)
G80 $=$ Canned cycle cancel	(23.9)
G81 $=$ Drilling cycle	(23.10)
G82 $=$ Drilling cycle with dwell	(23.11)
G90 $=$ Absolute Coordinates	(23.12)
G91 $=$ Relative Coordinates	(23.13)
M00 $=$ Pause	(23.14)
M01 $=$ Optional stop	(23.15)
M02 $=$ End of program	(23.16)
M03 $=$ Spindle on	(23.17)
M05 $=$ Spindle off	(23.18)
M06 $=$ Tool change	(23.19)
M08 $=$ Accessory \# 1 on	(23.20)
M09 $=$ Accessory \# 1 off	(23.21)
M10 $=$ Accessory \# 2 on	(23.22)
M11 $=$ Accessory \# 2 off	(23.23)
M30 $=$ Program end and reset	(23.24)
M47 $=$ Rewind	(23.25)

